

Node Manager and Deployment

Node Manager

A java program running on every node

The node manager starts up and runs as a separate java process from any
managed server.
Can be used to start / stop and monitor servers and clusters within a single
domain

 Node Manager is an optional tool.
 You can start/stop a Server without the Node Manager

Script location
E:\oracle\Middleware\wlserver_10.3\server\bin

Execute the script it will show the following message when node manager is up
and running.

By default it listens on port 5556, if we want to run node manager on a different
port

StartNodeManager.cmd server_name port_no

Deployment

To deploy from Admin Console, you must first create a deployable archive in
Oracle JDeveloper or through the ant or WebLogic Scripting Tool (WLST)
command line tools. The archive can consist of a single SOA composite
application revision in a JAR file or multiple composite application revisions
(known as a SOA bundle) in a ZIP file.

We can deploy the following into Oracle WebLogic Server:

■ A complete Java EE application packaged as an Enterprise Archive (EAR) file.
■ Standalone modules packaged as Java Archive files (JARs) containing Web
Services, Enterprise JavaBeans (EJBs), application clients (CARs), or resource
adapters (RARs).
■ An ADF application. Oracle Application Development Framework (Oracle ADF)
is
an end-to-end application framework that builds on Java Platform, Enterprise
Edition (Java EE) standards and open-source technologies to simplify and
accelerate implementing service-oriented applications.
■ An Oracle SOA Suite composite application. A SOA composite application is a
single unit of deployment that greatly simplifies the management and lifecycle of
SOA applications.
■ An Oracle WebCenter application. WebCenter applications differ from
traditional
Java EE applications in that they support run-time customization, including the
application's pages, the portlets contained within these pages, and document
libraries.

Deploying a JEE application.

Deploying a simple j2EE Application through admin console

We have prepackaged application called benefits.war.

1.Login to the Admins console

2.Navigate to domain_name—>deployments

3.Click on install button.

4.The following page will appear, prompting to enter the location of application
we want to deploy.

5.select benefits.war and click on next button.

6.The following page will be displayed, prompting for the type of application.

7. Set this to default value, install this deployment as an application.

8.click next, the following page will appear, prompting to select the server where
you want to install the application.

9.Select a server and click next.

10.

11.set all values to default, click next

12. click finish and the deployment configuration screen will be presented.

13. navigate back to deployments.

14. select the benefits application and click on startservicing all requests as
shown above.

15.once the application is active we can click the application and testing tab
under the settings.

16. click on url and the applications welcome page will be displayed.

Undeployment.

1.Navigate to domaindeployments

2.select the the application you want to undeploy and stop the application.

3. select the application and click on delete button.

SOA Application

For testing purpose we will deploy a preconfigured soa-application provided by
oracle which is Fod(Fusion order demo)

For your reference, the full FOD demo is here:

Steps
1.
a. Install soa suite11g(database, rcu, soa)
b. Install jdeveloper 11g (available for download from OTN)

2. Once you have a working SOA Suite installation, download the demo:

http://bpel.us.oracle.com/demos/SOA11gFusionOrderDemo/OracleSOAFusio
nOrderDemo_Source_2.0.jar [3 Mb]

3. Unzip the demo zip file somewhere on your hard drive. The rest of the

document will refer to the unzipped location as demoHome.

4. Start your WebLogic admin and managed servers.

5. Open demoHome/bin/build.properties using a text editor.

6. Set all of the properties appropriate for your environment. You can ignore the
properties between the "INTERNAL SEED PROPERTIES" comments.

If you're on WIndows, remember to use the double backslash notation. e.g.,
oracle.home=C:\\Oracle\\Middleware\\jdev_11gR1

In particular, it's most likely you'll need to set the following properties:

oracle.home

orderbooking.file.adapter.dir (make sure this directory exists)
admin.server.host

admin.server.port

managed.server.host

managed.server.port

server.user

server.password

server.targets

soa.server.oracle.home

jdbc-userid

jdbc-password

jdbc-url

7. Save your changes and open a command line in demoHome/bin.

8. Check your version of ant:

ant -version

It should be a recent version, e.g., 1.7 or higher. If it's not, or you don't have
ant installed, add the following to your path:

http://www.oracle.com/technology/products/jdev/samples/fod/index.html
http://bpel.us.oracle.com/demos/SOA11gFusionOrderDemo/OracleSOAFusionOrderDemo_Source_2.0.jar
http://bpel.us.oracle.com/demos/SOA11gFusionOrderDemo/OracleSOAFusionOrderDemo_Source_2.0.jar

Middleware/home_11gR1/modules/org.apache.ant_1.7.0/bin

Try ant -version again. If you get errors about missing libraries (e.g.,

tools.jar) then try setting this environment variable:

ANT_HOME=/oracle/Middleware/home_11gR1/modules/org.apache

.ant_1.7.0

You may also need this:

JAVA_HOME=/oracle/Middleware/home_11gR1/jdk160_11

Hint: In my (Linux) environment, I needed to do the following in order for ant
to succeed. You may not need to do this, but it you have issues it might help
you. Note that there are 4 commands shown, though it may look like more if
the text is wrapping.

% JAVA_HOME=/oracle/Middleware/home_11gR1/jdk160_11

% export

ANT_HOME=/oracle/Middleware/home_11gR1/modules/org.apache

.ant_1.7.0

% export PATH=$ANT_HOME/bin:$PATH

% ant server-setup-seed-deploy-test

9. From the command line, run this command to validate your properties:

ant -p

Successful output should look something like this:

$ ant -p

Buildfile: build.xml

 [echo] Ant: Apache Ant version 1.7.0 compiled on December 13

2006 Java: 1.6

 [input] skipping input as property server.password has already

been set.

Trying to override old definition of datatype wldeploy

Main targets:

 build.src.zip creates the source distribution

 clean cleans up the SOA fusion order demo

app

 compile-build-all Compiles and builds all artifacts

 compile-deploy-all builds all artifacts and deploys

them

 createMDSConnections seed the mds connection information

based on the properties in build.properties

 jdeveloper-setup-seed one shot client side setup, with

mds config, seed of jms, demo users and token replacement

 removeDemoUsers remove bpm demo user community

 removeFodJmsResources removes the FOD jms resources

 seedB2BAgreements seed b2b trading partner agreements

 seedDemoUsers seed bpm demo user community

 seedFodJmsResources creates the needed jms resources

 server-cleanup-all Undeploy all artifacts from server

 server-setup-seed-deploy-test one shot server side deployment,

including test

 setupWorkspaceForJdeveloperUse Setup the SOA FOD application for

jdeveloper use

 Default target: build.src.zip

If you encounter any errors, fix them before proceeding.

1
0.

From the command line, run this command:

ant server-setup-seed-deploy-test

Wait for the BUILD SUCCESSFUL message, it typically takes about 10

minutes. If you get errors, fix them before proceeding.

Monitor the application through em

Overview of DataSources

A data source is a Java object that application components use to obtain
connections to a relational database. Specific connection information, such as
URL or user name and password, are set on a data source object as properties
and do not need to be explicitly defined in an application's code. This abstraction
allows applications to be built in a portable manner, because the application is
not tied to a specific back-end database.

The database can change without affecting the application code.
Applications use the Java Naming and Directory Interface (JNDI) API to access a
data source object. The application uses a JNDI name that is bound to the data
source object. The JNDI name is logical and can be mapped to any data source
object. Like data source properties, using JNDI provides a level of abstraction,
since the underlying data source object can change without any changes
required in the application code. The end result is the details of accessing a
database are transparent to the application.

Configure a Datasource

1.Login to admin console

2.Navigate to domain_nameservicesJDBCData Souces

3.Click new to create a new datasource.

4.Give the ds name and jndi name
Provide driver type as oracle and select Database driver

Click next—next

5.provide database details

.
6.Test configuration and click finish

